

CJDLEY KIOX LIBRARY NV:IAL FUSTGRADUATE SCHOOL 1. JNTEREY, CALIFORNIA 93943

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

NUMERICAL OPTIMIZATION ALGORITHM FOR ENGINEERING PROBLEMS USING MICROCOMPUTER

by

Dong Soo, Kim

September 1984

Approved for public release; distribution unlimited.
T221340
$90 \mathrm{E}=\mathrm{y}$

Unclassified

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.

16. DISTRIGUTION STATEMENT (Of thls Roport)

Approved for public release; distribution unlimited.
17. DISTRIBUTION STATEMENT (Of the abstract ontered in Block 20, If differont from Report)
18. SUPPLEMENTARY NOTES
19. KEY WORDS (Contlnue on reverso aldo lf necoosary and Idontlfy by block number)

Microcomputer
Feasible Direction Method
20. ABSTRACT (Continue on reverso alde If neceseary and Identlfy by block numbef)

A general purpose computer program is developed to perform nonlinear constrained optimization of engineering design problems. The program is developed especially for use on microcomputers and is called Microcomputer Software for Constrained Optimization Problems (MSCOP). It will accept a nonlinear objective function and up to 50 inequality constraint functions and up to 20 bounded design variables.

MSCOP employs the method of feasible directions. Although developed for microcomputers, for speed of development, the MSCOP was implemented on an IBM 3033 using standard basic language, Waterloo BASIC Version 2.0. It is directiy transportable to a variety of microcomputers.

Typical applications of MSCOP program are in the design of machine components and simple beam and truss structures. Solutions to three sample problems are given.

Approved for public release; distribution unlimited.

Numerical Optimization Algorithm
for Engineering Problems
Using Micro-computer

by

Dong Soo, Kim
Major, Republic of Korea Army
B.S., Korea Military Academy, 1976
B.E., Seoul National University, 1980

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH
from the
NAVAL POSTGRADUATE SCHOOL
September 1984

ABSTRACT

A gereral purpose computer program is developed to perform nonlinear constrained optimization of engineering design problems. The program is developed especially for use on ricrocomputers and is called Microconputer Software for Constrained optimization Problems (MSCO?). It will accept a nonlinear objective function and up to 50 inequality constraint functions and up to 20 kounded design variables.

MSCOP employs the method of feasible directions. Aithough developed for microcomputers, for speed of develcpment, the MSCOP was implemented on an IBM 3033 using standard Lasic language, Waterloo BASIC Version 2.0. It is directly transportable to a variety of microcomputers.

Iypical applicaticns of MSCOP program are ir the design of machine comporents and simple beam and truss structures. Solutions to three sample problems are given.

TABLE OF CONTENTS

I. INIRODUCTION 10
A. PURPOSE 10
B. IMPIEMENTATION 11
C. GENERAL OFTIMIZATION MODEL 11
D. OFGANIZATICN OF THIS THESIS 13
II. ODTIMIZATION AIGORITHM 14
A. INTRODUCTION 14
B. SEARCH DIRECTION 16

1. Usable-Feasible Direction 17
2. Active Constraints 18
3. Suboptimization Problem and Push-Off Factors 18
4. Simple Simplex-like Method for Search Direction 20
5. Initially Infeasible Designs 22
C. CNE-DIMENSICNAL SEAFCH 24
6. No Viclated Constraints 24
7. One or More Constraints Violated 25
D. CONVERGENCE CRITERIA 26
III. MSCOP USAGE 27
A. INTRODUCTICN 27
B. PROBLEM FCFMULATION 27
C. PROBLEM ENTRY 28
IV. EXAMFLE PROBLEMS 31
A. DESIGN OF CANTILEVEFED BEAM 31
8. Uniform Cantilevereł Beam 31
9. Variable Cantilevered Beam 33
B. SIMPLE TROSS 38
V. SUMMAFY AND CCNCIUSION 42
APPENDIX A: MSCOP PFCGRAM LISTING 43
IIST CF GEFERENCES 54
BIBLICGRAPHY 55
INITIAI DISTRIBUTION IIST 56

LIST OF TABLES

I. The Solution cf a Uniform Cantileverel Beam . . . 33
II. The Solution of a Variable Cantilevered Beam . . . 37
III. The Solution of a 5-Bar Truss 41

LIST OF FIGURES

2.1	Algorithm for the Feasible Direction Kethod . . 15
2.2	Usable-Feasitle Direction 17
2.3	Push-off Factor and Bounding of the S-Veztor . . 19
4.1	Design of a Uniform Cantilevered Beam 31
4.2	Design of a Variable Cautilevered Bealil 34
4.3	Design of a 5-Bar Truss 38

ACKNOFLEDGEMENT

I am very grateful to prefessor Garret N. Vanderplaats whose expert advise, technical support and guidance resulted in $m y$ much understanding of ergineering optimization.

I also wish to express my sincere appreciation to Frofessor R. Kevin $W o o d$ for his critical review and comments during the preparation of this thesis.

The author extends a special thanks to Dr. Noriyaki Yoshida for his assistance, his time and his patience during the course of work.

Finally, to my wife, Jong Soon, whose patience and support was instrumental in the completion of this wcrk.

I. INTRODOCTION

A. PORPCSE

This thesis describes the development of a micrccomputer oriented program called MSCOP (Microcomputer Software for Constrained Optimization problems) for constrained optimization of engineering design problems. problems which can be solved by the MSCOF are nonlinear programming froblems arising in several areas of machine and structural design, such as the minimum weight design of structures subject to stress and displacement constraints [Ref. 1].

In recent years, several fowerful general purpose oftimization programs have become available for enginetring design problems, e.g., COPES/CONMIN [Ref. 2], anł ADS-1 [Ref. 3]. These programs can hanlle a wide range of design problems and contain a variety of solution technigues. Also, several programs are available that include optimization in an integrated analysis / design code, e.g., aCCESS, ASOP, EAI, PARS, SAVES, SPAR, STARS and TSO [Ref. 4]. All of the above optimization programs are written in FORTRAN, and are tuilt for use on a mainframe computer. Their use can be cumbersome, especially for the occasional user. Since many engineers are now using microcomputers, there is a $n \in e d$ to develop an optimization program contained in a microcomputer software package for use on microcomputers. This thesis fills that need by developing a compact program written in a standard EASIC language suitable for a wiłe range of microcomputers.

B. IEPLEMEATATION

The nature of an optimization program depends on the computer and programming method available. The MSCOZ software is designed for use on a microcomputer. However, for the sfeed of development and testing, MSCOP was developed on the IEM 3033 computer at the R. R. Church Computer center in Naval pestgraduate School, and was written in FEASIC (Waterloo Basic) Version 2.0 .

To make sure that the program is easily portable to a micrccomputer, only standard BASIC commands and functions are used. For example, FOR $I=1$ TO YDB ... NEXT I, GOSJB etc., were used. The commands and functions rot available in all variations of EASIC are avoided, for example, TRN(A), MAT (A) , etc.

MSCOF frovides design engineers with a convenient tcol for optirization of engineering design problems with up to 20 bounded design variables and as many as 50 inequality constraints.

C. GENEFAL OPTIMIZATICN MODEL

The general optirization problem to be solvea is of the form: Find the set of design variables \underline{X} that will

$$
\begin{equation*}
\text { Minimize } \quad F(\underline{X}) \tag{1.1}
\end{equation*}
$$

Subject to

$$
\begin{array}{ll}
G_{j}(\underline{X}) \leq 0 & j=1, \ldots, m \\
X_{i}^{1} \leq X_{i} \leq X_{i}^{u} & i=1, \ldots, r \tag{1.3}
\end{array}
$$

where X is referred to as the vector of design variables. $F(X)$ is the objective function which is to be minimized. $G(\underline{X})$ are inequality constraint functions, and X_{i}^{ℓ} and X_{i}^{u} are lower and upper kounds, respectively, on the design
variables. Although these bounds or "side constraints" could be included in the inequality constraint set given by Eg(1.2), it is convenient to treat them separately because of their special structure. The objective function and constraint functions may be nonlinear, explicit or implicit in X. However, they must be continuous and should have continuous first derivatives.

In general engineering optimization problems, the objective to ke minimized is usually the weight or volume of a structure being designed while the constraints gives limits cn compressive stress, tensile stress, Euler buckling, displacement, frequencies (eigenvalues), etc. [Ref. 5 : p. 264]. Equality constraints are not included because their inclusicn complicates the solution techniques and because in engineering situations, equality constraints are rare.

Most optimization algorithms require that an initial value of design variables xo be specified. Beginning from these starting values, the design is iteratively improved. The iterative procedure is given by

$$
\begin{equation*}
\underline{x}^{q+1}=\underline{x}^{q}+a * \underline{s}^{q} \tag{1.4}
\end{equation*}
$$

where q is the iteration number, S is a search direction vector in the design space, and a^{*} is a scalar parameter which defines the amcunt of change in X. At iteration q, it is desirable to determine a direction S which will reduce the objective functicn (usable direction) without violating the constraints (feasible direction). After determining the search direction, the design variables, X, are updated kI Eq (1.4) so that the minimum objective value is found in this direction. [Ref. 6].

Thus, it is seen that nonlinear optimization alyorithas for the general optimization problem based on Eq(1.4) can be separated into two parts, determination of search direction and determination of scalar parameter a^{*}.
D. ORGANIZATION OF THIS THESIS

This chapter has stated the purpose of the thesis and has put the general concept of engineering optimization into a preliminary perspective. Chapter 2 will describe the essential aspects of the optimization algorithm used in MSCOP such as finding a search direction, the onedimensional search and convergence criteria. Chapter 3 describes program usage. In chapter 4 , there are three examples which are sclved by the MSCOp. Summary and conclusions are given in chapter 5. The program is listed ir the appendix.

II. CPTIMIZATION ALGORITHM

A. INTRCDOCTION

There are many oftimization algorithms for constrained nonlinear problems such as generalized reduced gradient method, feasible direction method, penalty function methods, Augmented Lagrangian multiplier method, and sequential linear programming. The feasible direction method is chosen for development in this thesis for three main reasons. First it progresses rapidly to a near optimum design. Second it only requires gradients of objective and constraint $£$ unctions that are active at any given poirt in the optimization process [Ref. 7]. Third, because it maintains a feasible design, engineer cannot fail to meet safety requirements as defined by the contraints. However, the method does have several disadvantages in that it is prone to "zig-zag" between constraint boundaries and that it is usually does not achieve a precise optimum. This method solves the nonlinear programming problem by moving from a feasible point (can be initially infeasible) to another feasible point with an improved value of the objective value.

The following strategy is typical of feasible direction method: Assuming that an initial feasible point X^{0} is known, first find a usable-feasible direction S. The algorithm for this is similar to linear programming and complementary pivoting algorithms. Having found the search direction, a move is made in this direction to update the X vector according to Eq(1.4). The scalar a* is found by a one-dimensional search to reduce the objective function as much as possible subject to constraints. That is MIN

Figure 2.1 Algorithm for the Feasible Direction method.
$F(\underline{X}+a * \underline{S})$ subject to $G(\underline{X}+a * \underline{S}) \leq 0$. It is assumed that the initial design \mathbb{X}^{0} is feasible, but if it is not, a search
direction is found which will direct the design to the feasible region. After updating the X^{0} vector, the convergence test must be performed in the iterative algorithm. A convergence criteria used in this is implementation are described in section L . The general algorithm used in MSCOD is given in Figure 2.1

E. SEARCH DIRECTION

In the feasible direction algorithm, a usable - feasible search direction S is found which will reauce the objective function without violating any constraints for some finite move. It is assumed that at any point in the design space (at any X) the value of the objective and constraint functions as well as the gradients of these functions with respect to the design variables can be calculated. Since these gradients cannot usually be calculated analytically, the finite difference method $\mathrm{Eg}(2.1)$ is used in MSCOF.

where ${ }_{i}$ is the ith unit vector ε is a small scalar. In MSCOP, \mathcal{E} is 0.1% of the ith design variable

In the feasible direction algorithm, there are usually one or more "active" constraints. A constraint $G(X) \leq 0$ is "active" at \underline{X} if $g(\underline{X}) \approx 0$. As shown in Figure 2.1, if no constraints are active the standard steepest descent direction $\underline{S}=-\underline{\nabla}$ is used.

Figure 2.2 Usable-Feasible Direction.

Assume there are NAC active constraints at \underline{X}. The direction S is "usable" if it reduces the objective function, i.e.,

$$
\begin{equation*}
\nabla F \cdot S<0 \tag{2.2}
\end{equation*}
$$

Similarly the directicn is feasible if for a small movement in this direction, no constraint will be violated, i.e.,

$$
\begin{equation*}
\nabla G \cdot S<0 \tag{2.3}
\end{equation*}
$$

This is shown geometrically in Figure 2.2

2. ACtive Constraints

It is necessary to determine if a constraint is active or violated in the feasible direction algorithm. A constraint $G(\underline{X}) \leq 0$ is "active" at \underline{X}^{0} if $G\left(\underline{X}^{0}\right) \approx 0$. In crder to avoid the zigzagging effect between one or more constraint boundaries, a tolerance band about zero is used for determining whetrer or not a constraint is active. From the engineering point of view, a constraint $G(X) \leq 0$ is active $n \in a r$ the boundary $G(\underline{X})=0$ whenever $A C C \leq G(\underline{X}) \leq \nabla C C$. $A C C$ is the active constraint criterion and VCC is the violated constraint criterion in MSCOP. Assuming the feasitle constraints are normalized so that $G(\underline{X})$ ranges between -1 and 0 for reasonable values of X, the constraint $G(X) \leq 0$ is considered active if $G(\underline{X}) \geq-0.1$. The constraint is considered to be violated if $G(\underline{X}) \quad>0.004$. This is an algorithmic trick which improves efficiency and reliability of the algorithm. However, since in the one dimensicnal search, all interpolations for constraint $G(\underline{Y})$ are done for zeros of a linear or quadratic approximaticn to $G(\underline{X})$ in crder to find $a *$, at the optimum the value of active constraints are very near zero, but may be as large as 0.004 [Ref. 6]. From an engineering point of view, a 0.4% constraint violation is considered to be acceptable.
3. Suboptimizaticn problem ard Push=Off Factors

Zoutendijk [Ref. 8] has shown that a usable feasifle direction S fay be found as follows :

Maximize
β

Subject to ;

$$
\begin{equation*}
\nabla F(\underline{X}) \cdot \underline{S}+\beta \leq 0 \tag{2.5}
\end{equation*}
$$

$$
\begin{equation*}
\nabla G(X) \cdot \underline{s}+\theta_{j} \beta \leq 0 \quad j \in J \tag{2.6}
\end{equation*}
$$

S bourded

Where scalar β is a measure of the satisfaction of the usability and feasibility requirements. The scalar θ_{j} in Eq (2.6) is referred to as the "push-off" factor which effectively pushes the search direction away from the active

Figure 2.3 Push-Off Factor and Bounding of the S -Vector.
constraints. In Eq (2.6), if the push-off factor is zero, the search direction is tangent to the active constraints, and if it is infinite, then the search direction is tangent to the objective function. It has been found that a
push-off factor is defined as follows gives good results [Ref. 5: p. 167] :

$$
\begin{equation*}
\theta_{j}=\left[1-\frac{G_{j}(X)}{A C C}\right]^{2} \theta_{0} \tag{2.8}
\end{equation*}
$$

where $\theta_{0}=1$.
To avoid an unbounded solution when seeking a usable - feasible direction it is necessary to impose bounds on the search direction S. Cne method of imposing bounds on search directior is to impose bounds on the components of s-vector cf form :

$$
\begin{equation*}
-1<s_{i} \leq 1 \tag{2.9}
\end{equation*}
$$

This choice of bounding the S-vector actually biases the search direction. This is undesirable since we wish to use the push-off factors as our means of controlling the search direction. A method which avoids this bias in search direction is the circle as shown Figure 2.3 . The norm here is

$$
\begin{equation*}
\underline{S} \cdot \underline{s} \leq 1 \tag{2.9.1}
\end{equation*}
$$

4. Simple Simplex=like Method for Search Direction

Vanderplaats [Ref. 5: pp. 168-169] provides the matrix formulation which solves the above sub-optimization froblem by using the zoutendijk method.

$$
\begin{align*}
& \text { Maximize } \quad \underline{P} \cdot \underline{y} \tag{2.10}\\
& \text { Subject to }
\end{align*}
$$

$$
\begin{equation*}
\underline{A} \cdot \underline{Y} \leq 0 \tag{2.11}
\end{equation*}
$$

$$
\begin{equation*}
\underline{y} \cdot \underline{y} \leq 1 \tag{2.12}
\end{equation*}
$$

Where

$$
\underline{y}=\left[\begin{array}{c}
\underline{s}_{1} \tag{2.13}\\
\underline{s}_{2} \\
\vdots \\
\underline{S}_{n} \\
\beta
\end{array}\right] \quad \underline{p}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right]
$$

$$
\stackrel{A}{=}=\left(\begin{array}{cc}
\underline{\nabla}^{T} G_{1}(x), & \theta_{1} \tag{2.14}\\
\underline{\nabla}^{T} G_{2}(x), & \theta_{2} \\
\vdots & \vdots \\
\underline{\nabla}^{T} G_{j}(x), & \theta_{j} \\
\underline{\nabla} F(x), & 1
\end{array}\right]
$$

and where j is the number of active constraints (NAC)
When the solution to Eq(2.10) through (2.12) is found, s may be normalized to some valme other than unity, but the form of the normalization is the same. A solution to the above problem may be obtained by solving the following system derived from the kuhn-Tucker conditions for that probiem:

$$
\begin{align*}
& {\left[\begin{array}{ll}
B & I
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]=\underline{c}} \tag{2.15}\\
& u_{i} \geq 0 \quad v_{i} \geq 0 \quad \underline{u} \cdot \underline{v}=0 \tag{2.16}
\end{align*}
$$

Where

$$
\begin{align*}
& \underline{B}=-\underline{\underline{A}} \cdot \underline{\underline{A}} \tag{2.17}\\
& \underline{\underline{I}}=\text { Identity matrix } \tag{2.18}\\
& \underline{C}=-\underline{\underline{A}} \cdot \underline{\underline{E}} \tag{2.19}
\end{align*}
$$

Above system can be solved using a complimentary pivot algorithm. Choose an initial basic solution to $\mathrm{Eq}(2.15)$ is to Le

$$
\begin{equation*}
\underline{v}=\underline{c}, \quad \underline{u}=0 \tag{2.20}
\end{equation*}
$$

where v is the set of basic variables and \underline{u} is the $s \in t$ of nonbasic variables. If all $v_{i}>0$, Eq(2.16) is also satisfied and problem is solved. If some $\nabla_{i}<0$, the solution procedure is as follcws :

Let $E_{i i}$ be the diagcnal element of the $i-t h$ nonbasic variable.

1. Given the condition that some c is less then zero, we find max ($C_{i} / B_{i i}$) which is the incoming row to the basis.
2. The incoming column is changed to a rasic column, the takleau is updated by a standard simplex pivot on $B_{i i}$.
3. Until all $c_{i}>0$, repeat steps 1。and 2.
4. When all $c_{i}>0$, the iteration is complete. The value of u is now the desired solation.
5. By using $\underline{y}=\underline{\underline{p}} \underline{A}^{\top} \cdot \underline{u}$, we get the usable-feasible search directicn S which is first $N D V$ components of Y.

5. Initially Infeasible Designs

The method of feasible directions assumes that we begin with a feasible design and feasibility is maintained throughout the optimization process. If the initial design
is infeasirle, then a search direction pointing toward the feasible region can te found by a simple modificaticn to direction finding prctlea.

A design situation can exist in which the violated constraints are strcngly dependent on part of the design variables, while the objective function is primarily $d \in p \in r-$ dent on the other design variables. This suggests a method for finding a search direction which will simultaneously minimize the objective while overcoming the constraint violations. These considerations lead to the follcwing statement of the direction finding problem [Ref. 5 : pp.171-172]:

$$
\begin{equation*}
\text { Maximize } \quad-\underline{\nabla} F(\underline{X}) \cdot \underline{S}+\Phi \underline{\beta} \tag{2.21}
\end{equation*}
$$

Subject to ;

$$
\begin{equation*}
\underline{\nabla} G(\underline{X}) \cdot \underline{S}+\theta_{j} \beta \leq 0 \quad j \in J \tag{2.22}
\end{equation*}
$$

$$
\begin{equation*}
\underline{S} \cdot \underline{S} \leq 1 \tag{2.23}
\end{equation*}
$$

where J is the set cf active and violated constraints, and where the scalar Φ in $E q(2.21)$ is a weighting factor determining the relative importance of the objective and the constraints. usually a value of $\Phi>10000$ wili ensure that the resulting S-vector will point toward the Eeasible region. Incorporating Eq(2.21) and Eq(2.22) into the direction finding algorithm requires only that we modify the p-vector given in Eq(2.24) and the A-matrix of Eq(2.25).

$$
P=\left[\begin{array}{c}
-\underline{\nabla}(\underline{X}) \tag{2.24}\\
\Phi
\end{array}\right]
$$

$$
\stackrel{A}{=}=\left[\begin{array}{cc}
\stackrel{T}{\square} G(x), & \theta_{1} \tag{2.25}\\
\stackrel{T}{\nabla} G(x), & \theta_{2} \\
\vdots & \vdots \\
\underline{\nabla}_{2}^{T} G_{j}(x), & \theta_{j}
\end{array}\right]
$$

He use the simple simplex-like method to find the search airection toward the feasible region.

C. ONE-DIEENSIONAL SEARCA

1. No Violated ccnstraints

If no constraints are violateđ, we find the largest a* in Eq(1.4) from all possible values that will minimize the objective on S without violating any constraints, active or inactive.

The procedure in MSCOF is as follows :

1. Let $a 0, a 1, a 2$, $a 3$ be the scalar in $\Xi q(1.4)$ corresponding to pcints X0, X1, X2, X3, X4.
2. $a C=0$ at given point XO.
3. In order to get a1, we can calculate the al to reduce the objective by at most 10% or to change each of the design variable X by at most 10%.
4. Update the design variables to X1 using Eq(1.4).
5. Evaluate the cbjective for X1, and check the feasibility. If one or more constraints is violated, then a1 is reduced to $1 / 2$, and we go to step 4.
6. In order to estimate a2, we can use the quadratic approximation with 2 points $\underline{X}, \underline{X 1}$ and the $\underline{\nabla}$.
7. Update the design variables to $\mathbb{X 2}$ by Eq(1.4) ana check the side constraints.
8. Evaluate the objective and constraints.
9. Now having 3 a's, and values of objectives and
 known, so by using 3-point quadratic approximation, a value of a3 is found.
10. Update the new optimal foint in search direction by Eg(1.4).
11. Evaluate the okjective and constraints.
12. Now choose last 3 values, a1, a2, a3 and find a new a3 using 3-points Quadratic approximation
13. Choose the a* among the 5 points which corresfonds to the minimum objective function value with no-viclated constraints.

2. One or More Constraints Violated

If one or more constraints are initially violated, a modified usable-feasible direction is found. It is then necessary to find the scalar a* ir Eq(1.4) which will mirimize the maximum constraint violation, using the most violated constraint j, a good initial estimate for a* is

$$
\begin{equation*}
a *=\frac{-G_{j}(\underline{X})}{\underline{\nabla} G_{j}(\underline{X}) \cdot \underline{S}} \tag{2.27}
\end{equation*}
$$

Since the gradients of the violated constraints are known, the scalar which is required to obtain a feasible design with respect to violated constraint in the search direction, is given to a first approximation by Eq(2.27).

The more detail procedure in aSCop is as follow ;

1. Choose the most violated constraint j.
2. Calculate $a *$ for violated constraint j using Eq(2.27).
3. Ufdate the design variables for a* and check the side constraints.
4. If ore or more violated constraints still exist, then calculate the derivative of objective, violated and active constraints and find a new search direction and then go tc step 1. Otherwise proceed with the optimization in the normal fashior.

D. CCNVERGENCE CRITERIA

A desired property of an algorithm for solving a nonlinear froblem is that it should generate a sequence of points converging to a global optimal point. In many cases, however, we may have to be satisfied with less faverable outcomes. In fact, as a result of non-convexity, prcblem size, and other difficulties, we may stop the iterative procedure if a point belongs to a described set, which is defined in MSCOP as fcllows ;

$$
\begin{aligned}
& \text { 1. } Q_{1}=\left\{\underline{X}| | \underline{X}^{0}-\underline{X}\left|<\varepsilon_{x}\right| \underline{X}^{0} \mid\right\} \\
& \text { 2. } Q_{2}=\left\{\underline{X}| | F\left(\underline{X}^{0}\right)-F\left(\underline{X}^{0}\right)\left|<\varepsilon_{f}\right| F\left(\underline{X}^{0}\right) \mid\right\}
\end{aligned}
$$

In MSCOF, the algorithm is terminated if a point \underline{X} is reached such that $\underline{X} \in Q_{1} \cap Q_{2}$. ε_{x} is 0.001 and ε_{f} is approximatly 0.001 . Since in engineering design problems it is not necessary to find solutions with more than three significant digits.

III. MSCOP USAGE

A. INTFODUCTION

Since this MSCOP is written in MATERLOO BASIC Version 2.0, it is very convenient to use. The user must first formulate the design problem with the classical machine Cesign criteria. Given the formulation of the design problem as a nonlinєar program, the user then enters the problem as a part of a BASIC program. The user defines the objective function and constraint functions using EASIC statements. Other parameters are input as data : the number of design variables NDV, the number of inequality constraints NIQC, variable bcunds an initial design value and a prirt control number.

B. PRCBIEM FOBMOLATICN

Generally, the experienced design engineer will be able to choose the appropriate objective for optimization depending on the requirements of the particular application. The physical phenomena of significance should first be summarized for the device to be designed. The appropriate objective can then be selected and constraints can be imposed on the remaining phenomena to assure an acceptatle design from all standpoints. However, the initial formulation for the optimization problem should not be more complicated then necessary and this often requires the making of some simplifying assumptions. [Ref. 9].

After completing the formulation of the design prcklem, the design engineer should be able to answer the following questions :

1. What are the design variables ?
2. What is the objective function ?

3. What are the bounds on the variables ?

The engineer is then reały to input the program to the MSCOF. However, additional study and preparaticn of the problem may be useful. In particular, redundant constraints should be avoided if possible. MSCOP will operate with redundant constraints but it will operate faster without them. Selection of an initial design point from which to start this program is important, since it affects performance and running time. The user should use any availafle information which gives a good initial approximation. If side constraints exist, the user must be sure the initial values $o f$ the design variables do not violate the side constraints. This frogram will automatically handle an initial design point which is infeasible with respect to the $G(X)<0$ constraints. However, if the initial point does not violate these constraints, convergence will likely be more rapid.

C. PRCBIEM ENTRY

Froblem entry is accomplished by editing the main program directly. As an example, consider the following simple NIf with two design variables, and three constraint functions.

Minimize $F(X)=X_{1}^{2}+3 X_{1} X_{2}+2 X_{2}^{2}-X_{1}-X_{2}+1$ surject to ;

$$
\begin{aligned}
& x_{1}+x_{2}-3 \leq 0 \\
& \frac{1}{x_{1}}+\frac{1}{x_{2}}-2 \leq 0
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}^{2}+x_{1}-x_{2}-2 \leq 0 \\
& x_{i} \geq 0.1
\end{aligned}
$$

With the MSCOP loaded into memory and listed on the CRT, modifications are made on the program lines as follows to input this example :

Line 100
Just after the word "data", three inteçers are added, separated by a comal. The first number is MDV which is the number of design variables, the second is NICC which is the number of inequality constraints, and the third is IPET which is print control number (0 ; only final results, 1 ; given data and final results, 2 ; given data and iterative subcptimal results)
for example :
100 data 2,3,2
Lines 201-220
Each line here corresponds to a separate design variable, beginning with $X(1)$ and continuing in order to input X (NDV). On each line, three values are separated by commas. After the word "data", these values are the initial values of the design variable, the lower bound on the variable and the upper bound on the variable. If no bound is to be specified, the entry is filled by "no".

For the sample proklem, the input is :
201 data 3.,0.1,no
202 data 3.,0.1, no

These lines are available for defining the objective function. The okjective Eunction wust be defined in terms of subscripted design variables X(1), X(2), etc.

For the sample protlem, the input is:

$$
400 f n_{_} £=x(1) * * 2+x(1) * x(2)+2 . * x(2) * * 2-x(1)-x(2)+1
$$

Lines 500-650

These lines are available for defining the inequality constraint functicns, which must be expressed using the format :

$$
601 \text { if } i=k \text { then } f_{n_{-}} g=G_{i}(x)-b_{i}
$$

For the sample problem, the input is :

If there are many constant values in the constrairt functions, the user may input data for these functions on lines 501-600 in order to simpiify their statements.
IV. EXAMPLE PROBLEMS
A. DESIGN OF CANTILEVERED BEAM

1. Uniform Cantilevered Read

Assume a cantilevered beam as shown in Figure 4.1 must $b \in$ designed. The objective is to find the minimum

Figure 4.1 Design of a Deform Cantilevered Beam.
volume of material which will support the load P.
The design variables are the width B and height H in the $k \in a m$. The design task is as follows : Find B and H to minimize volume $\quad \nabla=B$ H 1
we wish to design the beam subject to limit on bending stress, shear stress, deflection and geometric conditiors. The bending stress in the beam must not exceed 20,000 psi.

$$
\begin{equation*}
\sigma_{b}=\frac{M c}{I}=\frac{6 P 1}{B H^{2}} \leq 20,000 \tag{4.2}
\end{equation*}
$$

The shear stress must not exceed 10,000 psi.

$$
\begin{equation*}
\sigma_{h}=\frac{3 \mathrm{P}}{2 \mathrm{~A}}=\frac{3 \mathrm{P}}{2 \mathrm{BH}} \leq 10,000 \tag{4.3}
\end{equation*}
$$

and the deflection under the load must not exceed 1 inch.

$$
\begin{equation*}
\delta=\frac{P I^{3}}{3 E I}=\frac{4 E I^{3}}{E B H^{3}} \leq 1.0 \tag{4.4}
\end{equation*}
$$

Additionally, geometric limits are imposed on the keam size.

$$
\begin{align*}
& 0.5 \leq B \leq 5.0 \tag{4.5}\\
& 1.0 \leq H \leq 20.0 \tag{4.6}\\
& H / b \leq 10 . \tag{4.7}
\end{align*}
$$

Now we can input this problem to MSCOP.
Input NDV, NIQC, IPRT

$$
00100 \text { data 2,4,2 }
$$

Initial starting points

$$
\begin{aligned}
& 00210 \text { data } 3.5,0.5,5.0 \\
& 00220 \text { data } 16.0,1.0,20.0
\end{aligned}
$$

Evaluation of objective

$$
00400 \mathrm{fn} _f=t l * x(1) * x(2)
$$

Evaluation of constraints
00500
00501
00502
07503
00503
00503
00503
00503 if
0
$e+6$
00
0
$1=$
1 th
2 th
3 th
4 th

TABLE I
The Solution of a Uniform Cantilevered Beam
objective ： 6664.0
design variable：

$$
\begin{aligned}
& x(1)=1.852 \\
& X(2)=17.99
\end{aligned}
$$

constraint ：

$$
\begin{aligned}
& g(1)=0.000902 \\
& g(2)=-0.9549 \\
& g(3)=-0.0109 \\
& g(4)=-0.0286
\end{aligned}
$$

As a result of this problem are in Table 4．1．

2．Variable Cantilevered Beam

The cantilevered beam shown in Figure 4.2 is to be designed for minimum material volume．The design variables are the width b and height h at each of 5 segments．We wish to design the beam subject to limits on stress（calculated at left end of each segment），deflection under the load，and the geometric requirement that the height of any segment does not exceed 20 times the width．

Figure 4.2 Design of a Variable Cantilevered Beam.

The deflection y at the right end of segment is calculated by the following recursion formulas :

$$
\begin{equation*}
y_{0}=y_{0}^{\prime}=0 \tag{4.8}
\end{equation*}
$$

$Y^{\prime}=\frac{P I_{i}}{E I_{i}}\left[L+\frac{I_{i}}{2}+\sum_{j=1}^{i} l_{i}\right]+Y_{i-1}^{\prime}$
$y=\frac{P 1_{i}^{2}}{2 E I_{i}}\left[I-\sum_{j=1}^{i} I_{i}+\frac{21_{i}}{3}\right]+y_{i-1}^{1} 1_{i}+y_{i-1}$
where the deflection y is defined as positive downward, y^{\prime} is the derivative of y with respect to the X, and l_{i} is the length of of segment i. Young's modilus E is the same for all segments, and the moment of inertia for segment is

$$
\begin{equation*}
I_{i}=\frac{r_{i} h_{i}^{3}}{12} \tag{4.11}
\end{equation*}
$$

The bending moment at the left end of segment i is calculated as

$$
\begin{equation*}
M_{i}=P\left\{L+1_{i}-\sum_{j=1}^{i} I_{i}\right\} \tag{4.12}
\end{equation*}
$$

and the corresponding maximum bending stress is

$$
\begin{equation*}
\sigma_{i}=\frac{M_{i}^{h_{i}}}{2 I_{i}} \tag{4.13}
\end{equation*}
$$

The design task is now defined as

$$
\begin{equation*}
\text { Minimize } \quad: \quad V=\sum_{i=1}^{N} b_{i} h_{i} l_{i} \tag{4.14}
\end{equation*}
$$

Subject to:

$$
\begin{array}{rl}
\frac{\sigma_{i}}{\bar{\sigma}}-1 \leq 0 & i=1, \ldots, N \\
\frac{{ }^{Y}}{N} \\
\bar{y} \tag{4.18}\\
h_{i}-1 \leq 0 & i
\end{array}
$$

$$
\begin{equation*}
b_{i} \geq 1.0 \quad h_{i} \geq 5.0 \quad i=1, \ldots, v \tag{4.19}
\end{equation*}
$$

where $\bar{\sigma}$ is the allowable bending stress and \bar{Y} is the allowable displacement. This is a design problem in 10 variables. There are 6 ncnlinear constraints defined by Eg(4.16) and Eq(4.17), and 5 linear constraints defined by Eq(4.18), and 10 side constraints on the design variables defined by Eq (4.19) •

Now we can infut this froblem to ySCOP.
Input $N D V, N I Q C, \quad I P R I$
00100 data 10,11,2
Initial starting points

	data	
	data	no
	data	
240	data	
00250	data	
00260	data	
	data	40. 5., no
	data	
	data	
030		

Evaluation of objective

$$
\begin{array}{r}
00400 \text { fn f }=100 \text { * } \quad(, x(1) * x(6)+x(2) * x(7)+x(3) * x(3) \\
x(4) * x(9)+x(5) * x(10))
\end{array}
$$

Evaluatiom of constraints.

TABLE II
The Solution of a Variable Cantilevered Beam objective : 62133.35
design variables

$$
\begin{aligned}
& x(1)=2.994 \\
& X(2)=2.782 \\
& X(3)=2.528 \\
& x(4)=2.208 \\
& X(5)=1.761 \\
& X(6)=59.88 \\
& x(7)=55.62 \\
& X(8)=50.56 \\
& X(9)=44.14 \\
& x(10)=35.19
\end{aligned}
$$

constraints

$$
\begin{aligned}
& G(1)=-0.00219 \\
& G(2)=-0.00415 \\
& G(3)=-0.00508 \\
& G(4)=-0.00406 \\
& G(5)=-0.0177 \\
& G(6)=-0.4401 \\
& G(7)=-0.0101 \\
& G(8)=-0.0231 \\
& G(9)=0.0000 \\
& G(10)=-0.0248 \\
& G(11)=-0.0278
\end{aligned}
$$

Figure 4.3 Design of a 5-Bar Truss.

A simple truss with 5 members as shown in Figure 4.3 is - designed for the minimum volume. The design variables are the sectioral areas of the members. The constraints are formed for the stresses of the members not to exceed the given allowable stress. The lower bound for each design variable is also considered. The stresses are ortain $\in \mathbb{d} y$ the displacement methcd of the finite element analysis. The equation to be solved is given by

$$
\begin{equation*}
\underline{K} \cdot \underline{u}=\underline{p} \tag{4.20}
\end{equation*}
$$

where $\underset{\underline{K}}{K}$ is the stiffness matrix, $\underline{\underline{u}}$ is the displacement vector and \underline{f} is the load vector as follows:

$$
\begin{align*}
& \underline{U}=\left[\begin{array}{c}
u_{1} \\
v_{1} \\
u_{2} \\
v_{2}
\end{array}\right] \quad \underline{p}=\left\{\begin{array}{c}
0 \\
0 \\
0 \\
-5000
\end{array}\right] \tag{4.21}\\
& \cong=E \cdot\left[\begin{array}{cccc}
\frac{A_{1}}{l}+\frac{A_{5}}{\sqrt{2 l}} & \frac{A_{5}}{\sqrt{2} l} & 0 & 0 \\
\frac{A_{5}}{\sqrt{2} l} & \frac{A_{2}}{l}+\frac{A_{5}}{\sqrt{2} l} & 0 & -\frac{A_{2}}{l} \\
0 & 0 & \frac{A_{3}}{l}+\frac{A_{4}}{\sqrt{2} l} & -\frac{A_{4}}{l} \\
0 & -\frac{A_{2}}{l} & -\frac{A_{4}}{l} & \frac{A_{2}}{l}+\frac{A_{4}}{\sqrt{2} l}
\end{array}\right]
\end{align*}
$$

(4.22)

From Eq. (4.20) the displacements are solved by

$$
\begin{equation*}
\underline{\mathrm{U}}=\underline{K}^{-1} \cdot \underline{\mathrm{P}} \tag{4.23}
\end{equation*}
$$

Having displacements at all nodes, we can calculate the stress for each element.

$$
\begin{equation*}
\sigma_{i}=E \cdot \varepsilon=\frac{E \cdot \Delta l_{i}}{l_{i}} \tag{4.24}
\end{equation*}
$$

where

$$
\begin{align*}
& \Delta 1_{1}=\sqrt{\left(1_{1}+u_{1}\right)^{2}+v_{1}^{2}}-1_{1} \\
& \Delta 1_{2}=\sqrt{\left(1_{2}+v_{1}-v_{2}\right)^{2}+\left(u_{1}-u_{2}\right)^{2}-I_{2}} \\
& \Delta I_{3}=\sqrt{\left(1_{3}+u_{2}\right)^{2}+v_{2}^{2}}-1_{3} \tag{4.25}
\end{align*}
$$

$$
\begin{aligned}
& \Delta 1_{4}=\sqrt{\left(1_{3}+u_{2}\right)^{2}+\left(1_{2}-v_{2}\right)^{2}}-1_{4} \\
& \Delta 1_{5}=\sqrt{\left(1_{3}+u_{1}\right)^{2}+\left(I_{2}+v_{9}\right)^{2}}-1_{5}
\end{aligned}
$$

The design froblem is given by

$$
\begin{equation*}
\text { minimize } \quad V=\sum_{i=1}^{5} A_{i} l_{i} \tag{4.26}
\end{equation*}
$$

Subject to

$$
\begin{align*}
& G_{i}=\frac{\left|\sigma_{i}\right|}{\sigma_{a}}-1.0 \leq 0 \quad i=1, \ldots, 5 \tag{4.27}\\
& A_{i} \geq 0.1 \tag{4.28}
\end{align*} \quad i=1, \ldots, 5 .
$$

The MSCOF irput for this problem is giver as follows:
Input NDV, NIQC, IPRT
00100 data 5,5,2
Initial starting point

Evaluation of objective

```
    \(\underset{\operatorname{sgr}(2 .) * x(5))}{00400} \underset{f}{f} \underset{f}{f}=100 *(x(1)+x(2)+x(3)+\operatorname{sgr}(2) * x.(4)+\)
```

Evaluation of constraints

```
\(0594 \mathrm{cs}=2\). syr (2.)
\(0505 \mathrm{ct}=\mathrm{te} / \mathrm{t} 1\)
\(0506 \mathrm{k} 11=(x(1)+x(5)\)
0506 k11 \(=(x(1)+x(5) / c s) * c t\)
\(0507 \mathrm{k} 12=x(5)^{*} c t(c s\)
\(0508 \mathrm{k} 21=k\{2\)
\(0509 \mathrm{k} 22=(x(2)+x(5) / c s) * c t\)
```



```
2000000
rononono
n 100000
000 NNO
```



```
\(=-50000\)
\((1)=p p /\)
\(\begin{aligned} & x \\ & x \\ & x\end{aligned}\left\{\begin{array}{l}2 \\ 2\end{array}\right\}+x(5) / c t-c t\)
```



```
\(v v(3)=d \mathrm{dk} * \mathrm{vv}(1)\)
```



```
\(h_{1}=S G E(2)^{\ddagger+1}\)
```



```
rem constraint.
```

TABLE III
The Sclution of a 5 -Bar Truss
objective : 108.52
design variables

constraint

$x(1)=0.1$
$G(1)=-1.9988$
$x(2)=0.1$
$G(2)=-2.0030$
$x(3)=3.514$
$G(3)=-0.0030$
$x(4)=4.948$
$G(4)=-0.1203$
$x(5)=0.1$
$G(1)=-1.9988$
$G(2)=-2.0030$
$G(3)=-0.0030$
$G(4)=-0.1203$
$G(5)=-1.8797$

จ. SOMMARY AND CONCLDSION

Numerical optimization is a powerful technique for those confronted with practical engineering design problems. It is also. a useful tool for obtaining reasonable solutions to the classical engineєring design problems. Since many engineers are now using \quad icrocomputers for solving design problems, the development of microcomputer software which can be easily used is needed.

In this thesis, an algorithm for constrained optimization problems is programmed in standard BASIC language (KBASIC version 2.0) on an IBM 3033. The users can easily convert this to other ricrocomputers.

MSCOE (Microccmputer Software for Constrained Optimization Problems) employs the method of feasible directions and specific modifications of a one-dimensional search for ccnstraineđ optimization. MSCOP has been validated by tests on three constrained optimization protlems. Its performance is good and could be made better through refinement cif the algorithm.

Since microcomputers are available with reasonable memory size and computational speed, their capabilities vill continue to improve as more engineering software becomes available. MSCOP is considered to be a first ster toward more widespread use cf optimization techniques on microccmputers.

APPENDIX A
 MSCOP PROGFAM IISTING

$\begin{aligned} & 0010 \\ & 0020 \\ & 0020 \end{aligned}$	$\begin{aligned} & \text { cftion base } 1 \\ & \text { dim }(21), \text { x0 }(21), q c v(51), \operatorname{ngcv}(51), \mathrm{di}(21), \mathrm{dg}(51,21) \end{aligned}$
0021	dim thta (21$)$, wrky 51,51$)$,
0030	
0050	
0060	reminput data
0070	gosub 10000 number of design variables and constrairts.
0090	read ndv, n iqc,ifrt
0100	data ${ }^{2}{ }^{4} q^{2}$
0115	rem input initial value of design variables
0120	read x (i)
0125	$x 0(i)=x(i)$
0135	read Ios,ups
0140	
0150	
	value (up\$)
$\begin{aligned} & 0160 \\ & 0200 \end{aligned}$	
0210	data 16.1.0,20.
0360	rem evalute the objective-function
0370	obj. $=$ fn_f(x)
0375	itri $=1$
0390	rem objective 1
0400	
0410	fnend-
0420	rem evaluate the constraints
0430 0440	
0450	
0480	rem constraint functions
0490	def fn ${ }^{\text {d }}$ (x, i)
0510	be = $30 \cdot \mathrm{e}+6$
0520	$\mathrm{bp}=10000$.
0530	if $i=1$ then $f n_{-g}=\left(6 * b p^{* t l}\right) /$
$\begin{aligned} & 0540 \\ & 0550 \end{aligned}$	
	if $i=4$ then fn $g=x(2) /(10 . * x(1))-1$.
0650	fnend
0700	$r \in \mathbb{I}$ initial counting number input
072	
0720	if ical >3 then stop
0740	rem call the oftimization code. gosub 2000
0750	rem print results.
0760	rem
3770	rem re-counting number input.
0785	
0790	rem 10% reduce the design variables.
0800	for i = 1 to ndv


```
    next i
    return
    rem initialize the integer working array
```



```
    next 1
    return
    rem initialize the one-dimension working array
        wrk1 (i) \(=0\).
    next i
    return
    rem initialize the one-dimension working array
    for i \(=1\) to nigm
        wrk2(i) \(=0\).
    next i
    return
    rem initialize the one-dimersion working array
```



```
next i
return
rem initialize the two-dimension working array
for \(i=1\) to \(n i q m\)
    next \(w{ }_{j}(i, j) \stackrel{t}{n}=0\).
next i
return
rem initialize the derivative of objective DF (i)
for dif (i) \(=\) to 0 .
next \(i\)
return
rem initialize the \(a(i, j), p(i), Y(i), c(i)\)
for \(\underset{\sim}{i}(\underset{\dot{i}}{i})=1\) to ndvm
```



```
n
\(\begin{array}{ll}\text { next } \\ \text { for } \\ \mathrm{i} \\ \text { ( } & =1 \\ = & \text { to } \\ 0\end{array}\)
next 3
return initialize the derivative of constraints \(D G(i, j)\)
rem initialize th
```



```
next 1
returr
rom initialize the \(b(i, j)\)
```



```
    nex
next i
return
rem Calculate the number of active and violate
constraints.
wivind
HuNucic
gosub 3000
gosub 3100
nac \(=0\)
nvc \(=0\)
for \(i=1\) to niqc
```

 ルー Qrth H
$\left.\left.\begin{array}{l}\text { iff gcv } \\ \text { if } \\ \text { gcv } \\ \text { (i) } \\ i\end{array}\right)\right\rangle=\nabla C c$ then 3580 nac $=n a c+1$
goto 3590

$$
\begin{aligned}
& \text { ne } \\
& \text { na } \\
& \text { if }
\end{aligned}
$$

 in \(=1\)
 $i j==1$
nvc = $\mathrm{nvc}+1$
navc $=n a c+n v c$
$1=$

$\begin{aligned} & \text { IWIK } \\ & W \mathrm{r} M\end{aligned}\binom{n v C+i+i}{n v C+i}=i$
ii $=i i+1$
goto 3750
next
0 then 3790
urn
culate the gradient of $f(x)$
qosub 3300 to $n d v$
if $\underset{i f d m a b s(x(i))}{i=}$ mids then $d x i=m f d s$
$\operatorname{dob} \stackrel{X(\underset{\sim}{i})}{=}=\underset{f}{x}\left(\frac{i}{x}\right)+d x i$

next i
return
rem calculate the $D G(i, j)$
qosub 3400
dxi $=$ fidm*x $<$ (i)

$k=i W I K(j)$
dcon $=f\left(\begin{array}{l}n \\ = \\ (d)\end{array}(x, k)\right.$
next j $x(i)=x 0(i)$
next i
return
rem calcilate the push-off factor
for $i=1$ to navc
thta (i) $=$ thto* (1. -wrk1 (i) /acc)**2
if thta (i) $>$ thta then thta(i) $=$ thtm
next i
return
rem normalize the DF(i)
gosub 3200
fsq $=0$.

next i
return
rem normalize the $D G(i)$
qosub 3250 to $n a v c$
$\mathrm{gSq}=0$.


```
FEF
EFEN
OMOU
OUO 4420
for \(j=1\) tc ndv
next \(=g s q+d g(i, j) * * 2\)
gSq＝sqr\｛gsqhen gsq＝zro
for \(\mathrm{j}_{\mathrm{k}}^{\mathrm{k}}=(\mathrm{i}, \mathrm{to}) \stackrel{n d v}{=}(1 . / \mathrm{g} s \mathrm{q}) * d g(i, j)\)
next j
returi
rem exist the violate constraints gosub 3350
```

```
    for \(j_{i}^{1}=\begin{aligned} & \text { to } \\ & 1 \\ & \text { tavc } \\ & \text { tidv }\end{aligned}\)
```

 for \(j_{i}^{1}=\begin{aligned} & \text { to } \\ & 1 \\ & \text { tavc } \\ & \text { tidv }\end{aligned}\)
 next \((i, j)=w \operatorname{jv}(i, j)\)
 next \((i, j)=w \operatorname{jv}(i, j)\)
 \(a(i, n d v+1)=\) thta(i)
 \(a(i, n d v+1)=\) thta(i)
 for $i=1$ to $n d v$
$p(i)=-$ wrk3 (i)
$\begin{aligned} & \text { next } \\ & \text { por } \\ & \text { in }\end{aligned}=$ phid
毛or $i=1$ to navc
yy = y $_{\text {y }}=1$ tc ndv+1
nexy $=Y y+X X$
$c(i) \xlongequal{j}$
on $\begin{aligned} & \text { on } \\ & \text { onist active }\end{aligned}$
Or $i=1$ to nave

```

```

 \(a(i, n d v+1)=\operatorname{thta}(i)\)
 next
$a($ navct $1, j)=$ wrk3 (j)
next J
$a(n a v c+1, n d v+1)=1$.
$p(n d y+1), 1$.
主Or i = 1 to navc +1
$c c=a(i, n d v+1) * p(n d v+1)$
next $\left(\frac{1}{i}\right)=(-1) * c$.
$n d t=n a v c+1$
return
rem calculate the usable-feasible direction
$\begin{array}{ll}\text { gosub } & 3000 \\ \text { gosub } & 3250\end{array}$
gosur 3250
qosub 3450
for i $=1$ to $n d t$
for $j=1$ to ndv+1 $=(j, i)$
next

$n \mathrm{C}$
f

 \({ }^{i}{ }^{i}=\)
 \(=1\) to \(n d t\)
 $\dot{f}=1$ to nd
$=0$.
next $(1, j)=(-1) * f$.

```

```

next

```
next
iter \(=0\)
\(n\) max \(=5 n a b\)
iter \(=0\)
\(n\) max \(=5 n a b\)
rem begin iteration
rem begin iteration
1ter = iter+1
1ter = iter+1
\(c b m x=0\).
\(c b m x=0\).
for \(i=1\) to \(n d r\)
for \(i=1\) to \(n d r\)
    \(\mathrm{c}_{\mathrm{b}}^{\mathrm{i}}=\mathrm{c}_{\mathrm{i}}(\mathrm{i}\)
```

 \(\mathrm{c}_{\mathrm{b}}^{\mathrm{i}}=\mathrm{c}_{\mathrm{i}}(\mathrm{i}\)
    ```


```

Ci >0. then 53440

```
Ci \(>0\). then 53440
\(c b=c i / b i i\)
\(c b=c i / b i i\)
    if \(\mathrm{cb}<=\mathrm{Cbmx}\) then 5340
    if \(\mathrm{cb}<=\mathrm{Cbmx}\) then 5340
    \(i c h k=\)
\(c h m x\)
\(i\) .
    \(i c h k=\)
\(c h m x\)
\(i\) .
if cbmx < zro or iter > max then 5550
if cbmx < zro or iter > max then 5550
if ichk \(=0\) then 5550
if ichk \(=0\) then 5550
if jı = 0 then iwrk (ichk) = ichk else ikrk (ichk) = 0
```

if jı = 0 then iwrk (ichk) = ichk else ikrk (ichk) = 0

```




```

next i

```
next i
c(ichk) = cbmx
c(ichk) = cbmx
if \(\bar{i}=\) toh ndb
if \(\bar{i}=\) toh ndb
                \(b b i=k(i, i c h k)\)
```

 \(b b i=k(i, i c h k)\)
    ```




```

 \(c(i) \stackrel{n e x t}{=} c(i)-b b i * c b m x\)
    ```
                \(c(i) \stackrel{n e x t}{=} c(i)-b b i * c b m x\)
next i
next i
goto 5220
goto 5220
\(\underset{\text { ºr }}{\text { Or }_{(i)}^{i}}=1\) to \(n d t\)
\(\underset{\text { ºr }}{\text { Or }_{(i)}^{i}}=1\) to \(n d t\)
if \(\underset{j}{j}=0\) iwrk (i)
if \(\underset{j}{j}=0\) iwrk (i)
nexti i
nexti i
        \(\begin{aligned} \frac{i}{f} & =1 \text { to } n d t\end{aligned}\)
        \(\begin{aligned} \frac{i}{f} & =1 \text { to } n d t\end{aligned}\)
    for \(\dot{j}=1 \mathrm{tondb}\)
    for \(\dot{j}=1 \mathrm{tondb}\)
    \(\left.\begin{array}{l}\text { next } \\ y \\ \frac{y}{i}\left(\frac{i}{i}\right.\end{array}\right)=\frac{p}{y}\binom{i}{i}-f f\)
    \(\left.\begin{array}{l}\text { next } \\ y \\ \frac{y}{i}\left(\frac{i}{i}\right.\end{array}\right)=\frac{p}{y}\binom{i}{i}-f f\)
    next
    next
    reIf normalized the \(s(i)\)
    reIf normalized the \(s(i)\)
    \(\underset{\mathrm{f}}{\mathrm{SSG}} \mathrm{\bar{I}} \stackrel{0}{=} 1\) to ndv
    \(\underset{\mathrm{f}}{\mathrm{SSG}} \mathrm{\bar{I}} \stackrel{0}{=} 1\) to ndv
        \(s s q=s s q+s(i) * * 2\)
        \(s s q=s s q+s(i) * * 2\)
    next 1
```

 next 1
    ```


```

 \(\operatorname{fors}_{\mathrm{s}(\mathrm{i})}^{=1}\) to \(\mathrm{ndv}(1 . / \mathrm{ssq}) * \mathrm{~s}(\mathrm{i})\)
    ```
    \(\operatorname{fors}_{\mathrm{s}(\mathrm{i})}^{=1}\) to \(\mathrm{ndv}(1 . / \mathrm{ssq}) * \mathrm{~s}(\mathrm{i})\)
    next i
    next i
    return
    return
    rem ore-dimensicnal, search for initial Eeasible pcint.
    rem ore-dimensicnal, search for initial Eeasible pcint.
    rem calculate for siope of \(f(x)\)
    rem calculate for siope of \(f(x)\)
    \(\operatorname{ffsl}_{i}=0 \quad i\) to \(n d \nabla\)
```

 \(\operatorname{ffsl}_{i}=0 \quad i\) to \(n d \nabla\)
    ```

```

nnn
00
$f=1$

```
```

nextslp $=f s l p+d f(i) * s(i)$
rem ićenfy the initial poirt.
alow $=0$
ElOW $=0$.
WIkI (i) $=\mathrm{gC} \overline{\mathrm{v}}$ (i)
rext find a 1 ist ; the 1 st wid-point
iff fslp = of then fslp = zro
a1st = aboj*flow/abs (Eslp)
if $=1$ to ndv
walp= alpx*x (i) abs (i) $=$ zro
if walp> a 1 st then 6095
a1st $=$ walp
next
rem update x for a1st.
alph $=$ a $15 t$
gosub 7100
rem calcuiate the fist and wrki(i)

```

```

next check the feasibility.
nCV1 $=1$ to nigc
if wriv $\begin{gathered}\text { (i) } \\ \text { ncvi } \\ = \\ \text { ncvict }\end{gathered}$
next if $1=0$ then 6200
a 1 st $=0.5 * a 1 s t$

```

```

rem 2-points quadratic fit interpolation
for minimum $f(a l p a)$.

```


```

$=$ flow

```

```

a2nd $=-\mathrm{a} 1 /(2 . * a 2)$
rem 2-points linear interpolation for g(alpz)=0.
fOI i $=1$ to nigc
if a $1 \mathrm{st}=\left(\frac{1}{0}\right)$ then a $1 \mathrm{st}=$ zro
a $1=1$ (wrk1 (i)-a0)/a1st
walp $=-a 0 / a 1$
if
walp $<=0$ then walp $=1000$.
if walp $>=$ andd then 6265
$w a l p=a 2 n$
$a 2 n d=w a l p$
next i
rem update x for a2nd.
alph $=$ a2nd
gosub 7100
rem calculate f2nd and wrk2 (i)
f2nd $=$ fn f (x)

```

```

wrk2 (i) $=\mathrm{f}_{\mathrm{n}}^{\mathrm{G}} \mathrm{g}(\mathrm{x}, \mathrm{i})$
next
Iem find final foint aupr by using
f1 = $=$-plownts quadratic fit.
flel $=10 w$
alow
f 2 flst
alp2 $=a 1 s t$

``` - 1


rem 3-points quadratic fit interfolatior.
gosub 6600
if a \(2=0\). then a2 \(2=\) zro

if a3rd \(<=0\) then a3rd \(=1000\).
    \(\left.\left.\begin{array}{rl}r & =1 \text { to nig } \\ f_{1} & =\text { wrkl } \\ \text { f2 } & =\text { wrki } \\ \text { f3 } & =w r k 2\end{array}\right\} \begin{array}{l}i \\ i\end{array}\right\}\)
    gosub 6600
gosub 6530
if alps \(>\) a3rd then 6380
        a3rd=alfs
next
rem updatex for aupr
alch \(=\) a3rd
gosub 7000
gosub 7100 calculate the fupr and wrku(i)
fupr \(=\) fn-f
for \(i=1-\) nige

next find 4 th \(n\) ew point.
    \(f 1=f 1 s t\)
\(f 2=f 2 n d\)
\(f 3=f 3 r d\)
alp1 \(=a 1 s t\)
alp2 \(=a 2 n d\)
\(a 1 E 3=a 3 r d\)
rem 3-points quadratic fit.
gosub 6600 . then \(a 2=0\) aro

for \(\frac{i}{1}\) to nige
        \(\left.\left.\begin{array}{l}f 1=\text { wrk } \\ f 2=\text { wrk2 } \\ \text { f3 }=\text { wrk3 }\end{array}\right\} \begin{array}{l}i \\ i\end{array}\right\}\)

    sosub 6600
    gosub 6630
    if alps a upr then 6540
    rem update \(x\) for aupr
    alch = aupr
    gosub 7000
gosub 7100
    rem evaluate EuFr and wrku(i)
    \(\operatorname{fupr}_{\text {for }}=\frac{f}{1}-\frac{f}{\text { to }}(x)\) nicc
        \(\mathrm{wr}_{\mathrm{i}} \mathrm{u}(\mathrm{i})={ }^{\mathrm{I}} \overline{\mathrm{n}}\) _g \((\mathrm{x}, \mathrm{i})\)
    next find optimum alpa for not violating constraints.
    gosub 14300
    return
    rem 3-points quadratic fit.
if alp1 = alp2 cr alp2 = alp3 or alp1 = alp3
then return
6605 a2 \(=((f 3-f 1) /(a l p 3-a l p 1)\) -
6610

6615
6620
5630
    return
    rem zero of polynomial for g(alpa)
 トロート・ロ
 \(1 * * 2-4 \cdot * a 2 * a 0\)
\(<\)
\(2=0\) ．then a \(2=\) zro

6660
6665
6670
6675
6685
6690
6695
6700
6705
6712
5715
6720

alps=1000.
alps=1000.
return
rem update aboj and alpx

weIX \(=0\).

next \(i\) alp
next
alpx
datpx+walp)
\(=a c c i 2\).
return
rem update the \(x(i)\)

next i
rem check the side-constraints.
for
\(i\)
next i
return
rem estimate the alpa
fstr = flow
alpa \(=\) alow
nvc \(=0\)

        if wrk 1 (i) nigc \({ }^{\text {(i) }}\) vCc then 8070
        nvci = nvc1+1
next i

    alpa \(=\mathrm{alst}\)
fistr \(=\mathrm{fist}\)
nvc1 \(=0,1\) to nigc
for if \(=1\) to nige (i) \({ }_{\text {if }}\) vcc then 8160
    nvc1 = nvc1+1
\(n e\)
\(i f\)
\(i f\)

nvcifstron \(=\)

```

22
23
24
8240
250
826
8280
8290
300

```

```

 nvc1 = nvc \(1+1\)
 next $1>0$ ther 8300
iff nvel >0 ther 8300
if f3rd
$n \vee c \uparrow=\mathrm{f}_{0}=\mathrm{f} 3 \mathrm{rd}$
for i $=1$ to nigc
if wrku (i) $<\overrightarrow{V C C}$ then 8340
nvc1 = nvc1+1
$\begin{aligned} \text { if nver } & >0 \text { th } \\ \text { if fupr } & \text { fstr } \\ \text { alga } & =\text { aupr } \\ \text { fstr } & =\text { Eupr }\end{aligned}$
alph = alpa
return
rem one-dimensional search for initial
infeasible foint.
ii $=1$
qcvm $=$ wrki(1)
IOI i $=1$ to navc
if wrk $1(i)<=$ gCvm then 9014
gcym = wrk1 (i)
next i
rem calculate the slope of bady violation.
SSIP $=0 i$ to $n d v$
$g s l p=g s l p+d g(i i, i) * s(i)$
next ialculate the alph.
if gslp = 0. then gsip = zro
alfh =-qcvm/qsipapan
gosub 7000
gosub 7100
rem evalute the objective and constraint.
obj $=$ fn f (x)
for i $=$
$g C v(i) \stackrel{t}{=} f_{n} n_{G}(x, i)$
next i
rem calculate the NVC.
gosub 3500
if $n v c=0$ then return
rem update initial value.
for $x_{0}^{i}(\overline{\bar{i}})={ }^{1}=$ to n (i)
next 1 (i)
rem calculate df(i), dg(i,j) and push-off factor.
gosub 3800
gosub 3900
gosub 4000
rem normalize the $d f(i), d g(i, j)$
gosub 4100
gosub 4200
rem find the search direction.
gosub 4400
gosub 5000
goto 9000
rem print the results
print :
print ' 'The number of design variables $=$, ndv
print ime number of inequality constraints = iniqc

```

```

A. EA
F. 4.74
440
0.40
! T
The objective value $=$ 'obj

```

```

for i
$=1$ to $n d v$
print $\mathrm{x}\left({ }^{\prime} ; \dot{\mathrm{i}} \mathbf{\prime}^{\prime}\right)=1, \mathrm{x}(\mathrm{i})$
next i
print",
print the number of active constraints = ; nad
print ! the number of vionate constraints = inc
print
print :**** constraint value ****"
色Or i $=1$ to nioc
nextrint 'g(';íj') = ';gev (i)
return
rem default number
mit $=50 \quad$! maximum iteration number
fam $=.01$! finite difference step
$\operatorname{mfds}=.001$! maximum absolute finite difference st $\in \mathbb{V}$
acc $=-1 \quad$ i active constraints criteria (thickness)
tho $=1 . \quad$ i push-off factor multiplier (theta zero)
them $=50^{\circ}$! maximum value of push-off. factor
phid $=100000$. ! weighting-factor used in direction
when infeasible
9590
9600 accf $=0.001 \quad$ acct $=0.001 \quad$ absolute convergence criteria
© 610
9620 espl $=-005 \quad$! used to prevent division by zero
9630 bnlo $=-1 . e+70$! the value of low boundary
9640 bnup $=1 . e+70$ the value of upper boundary
9630 brio $=1 \cdot 1 \cdot e+70$! the value of upper boundary
9650 alp $=.01$! step size of alpa in one-dimensional
9660 abcj $=0.1$! step size for reduce objective
9670 alp $=21 \quad$! reduce the design variable factor
9690 niqm $=51$! the number of maximum inequality
9700 return
9800 end

```
1. Noriaki Yoshida, (H.I.T in Japan) " Optimum Stiffener Design to High Stress Region of Beam Column Criteria",
2. L. Madsen and G. Nanderplaats, "CODES - A FOFTRAN

3. G. N. Vanderflaats, "ADS - A FORTRAN Program for Automated Design Synthesis. Version 1.0", Naval Postgraduate School, May 1984.
4. G. N. Vanderflaats, "Structural Optimizatior - Past, Present, Future", AIAA Jourral Vol. 20, No 7. July 1982.
5. G. N. Vanderplaats, Numerical opptimization Methcd for Engin \(\frac{n}{9} \frac{2}{9} \frac{1}{4} \frac{1}{2}\)
6. G. N. Vanderflaats, "Feasible Direction Method ", Naval Postgraduate School, July 1978.
7. G. N. Vanderplaats, "A Robust Feasible Directions Algorithm for Iesign Synthesis ", AIAA/ASME/ASCE/AHS, \(24 t h\) Structures, Structural Dynamics and Materials Conferance, Lake Tahoe, Nevada, May 2-4, 1983.
8. \(\quad\) Zoutendijk, G"Methods of Feasible Direction, Elsevier,



\section*{BIBLICG FAPBY}




 H. Falk, " Software Tcol for Mechanical Engineers", J. Mech. Engr.. Vcl. 195 NO . 8, August 1983.
M. S Bazaraa and C. N. Shetty Non Ninear programming : Inconarightunt, Optimum Structural Desigr, Prentice - Hall,



1. Defense Technical Information Center

Cameron Station
Alexanaria, Virginia 22314
2. Iibraryó Code 0142 . School

Monterey, Califcrnia 93943
3. Departient Chairnan, Code 54

Dept. of Operations Research
Navai Postgraduate School
Monterey, California 93943
4. Drofessor G. N. Vanderplaats

Dept. of Mechanical Engireeríng
Oniv. of California at Santa Babara
California 93106
5. Frofessor R. K. 5 ood, Code 55 wd

Dept. of Operaticns Research
Navai Postgraduate. School
Monterey, Califcrnia 93943

NASA Ames. Research Center
Moffett Field, California 94035
7. Erofessor Noriyaki Yoshida

Dept. of Civil Engineering
419 Teine Maeda Nishi-ku
Sapporo, Japan (61-24
8. Frofessor Yong s. Shin, Code 69 Sg

Dept. of Mechanical Engineering
Navai Postgraduate School
Monterey, Califcrnia 93943
9. Frofessor T. Sarpkaya, Code 69 Sl

Navai posturaduate schgineering
Naval Postyraduate School
Monterey, Califcria 93943
10. Professor Robert Ri Nunn, Code 69 Nn

Dept. of Mechanical Engineering
Naval Postgraduate School
Monterey, Califcrnia 93943
11. Frofessor M. D. Kelleher, Code 69 Kk

Dept. of Mechanical Fngineering
Naval Postgraduate. School
monterey, California 93943
12. Professor Gilles Cantine, Code 69 Ci

Dept. of Mechanical Engineering
Naval Postgraduate School
Monterey, Califcrnia 93943
13. Erofessor Seong Hwan, Cho
Dept.Mechanical Engineering
PO Eox 77. Rong Neung Dong
Lc Eong Ku, Seoul, Korea \(130-09\)
14. Dong Soo, Kim
\(585-15\) Hyoja 1 dang
Chuncheon City Kangwondo.
Seoul Korea 200
15. Fersonnel Managexent Office 2 Army Headquarters Korea 140-01
16. Cffice of the Jefense Attache
Fmbassy of the Republic of Korea
2320 Massachusetts Avenue, Northwest
Washington, D.C. 20008
\(\begin{array}{ll}\text { 17. Iibrary officer } & 2 \\ \text { Korea } \\ \text { Seoul, Koreary } 1 \text { Academy }\end{array}\)
.

13375
```

